Comparison of future fuels and technologies for shipping

Frauke Wiese
DTU MAN
System Analysis
90% of world trade is transported by ship

Shipping Emissions

- 2-3% of global greenhouse gas emissions [IMO 2015]
- Growth rates of 4% per year

- Predicted increase by 2050: 50% - 250% [IMO 2015]
- If unregulated, by 2050: 20% of global greenhouse gas emissions

⇒ Shipping is not on track to reach a 1.5 - 2°C climate goal
Shipping Emission Reduction Scenarios

Annual CO₂ emissions from the global shipping fleet, distinguished by business-as-usual and reduction scenario pathways.

Source: Boumann et al. 2017
Emission Reduction Measures: up to 75% by existing technologies

Source: Boumann et al. 2017
Current and upcoming regulation

CURRENT:
• Emission Control Areas
• Efficiency Standards
• Shipping outside UN Paris Agreement
• IMO 2016: Data Collection

FUTURE:
• EU 2018: Reporting for large ships using EU ports
• IMO 2018: Initial CO$_2$ reduction commitments to be agreed on

Source:
IMO / Andersson and Salzar 2015
Denmark – Role of Shipping

Ship Movements 31.October 2017 - 09:30
Source: Marine Traffic : https://www.marinetraffic.com
Danish Shipping?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish ships within</td>
<td>6</td>
<td>0.4</td>
<td>0.04</td>
</tr>
<tr>
<td>Denmark [Energistyrelsen 2015]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danish ships</td>
<td>10</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>[Danmarks Statistik 2015]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Own calculations based on:
- Energistyrelsen 2015 – Transport – Søtransport
- Statistics Denmark 2015 ([ENE1HA](https://example.com/ENE1HA) 50000 Water transport)
Danish Shipping?

<table>
<thead>
<tr>
<th>Description</th>
<th>Energy [PJ]</th>
<th>Emission [Mt CO2/year]</th>
<th>Danish Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish ships within Denmark [Energistyrelsen 2015]</td>
<td>6</td>
<td>0.4</td>
<td>0.04</td>
</tr>
<tr>
<td>Danish ships [Danmarks Statistik 2015]</td>
<td>10</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Including half of int. voyages from/to Denmark</td>
<td>280</td>
<td>21.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Ships run by a Danish company [Mærsk 2016]</td>
<td>445</td>
<td>34.3</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Source: Own calculations based on:
- Energistyrelsen 2015 – Transport – Søtransport
- Statistics Denmark 2015 ([ENE1HA](#)) 50000 Water transport
- Wisdom 2017, calculation based on data from Eurostat 2017
- Mærsk Sustainability Report 2016
Energy carriers and sources for shipping

FOCUS THIS PRESENTATION

Gaseous
- LNG – Liquefied Natural Gas
- LBG – Liquefied Biogas (Biomethane)

Liquid
- MeOH – Methanol
- bioMeOH – Bio-Methanol

Electric
- Batteries
- Hydrogen

Renewables
- Wind and Solar
Energy carriers and sources for shipping

FOCUS THIS PRESENTATION

Gaseous
• LNG – Liquefied Natural Gas
• LBG – Liquefied Biogas (Biomethane)

Liquid
• MeOH – Methanol
• bioMeOH – Bio-Methanol

Electric
• Batteries
• Hydrogen
• Renewables
• Wind and Solar

OTHER:
• Liquefied Petroleum Gas (LPG) - mixture of propane and butane
• DME – Di-Methyl Ether
• Ethanol
• Biodiesel
• Vegetable Oil
• Synthetic Fuels
Emissions of marine fuels – Life Cycle

Sources: Bengtsson et al. 2011 / Andersson and Salazar 2015
LNG – LBG – MeOH - bioMeOH

Source: Brynolf et al. 2014 / Anderson and Salazar 2015
Global Warming Potential

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Global warming potential for given time horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 years</td>
</tr>
<tr>
<td>CO₂</td>
<td>1</td>
</tr>
<tr>
<td>CH₄</td>
<td>72</td>
</tr>
<tr>
<td>N₂O</td>
<td>289</td>
</tr>
</tbody>
</table>

Source: Chryssakis 2014
LNG – MeOH – LBG – BioMeOH

Source: Brynolf et al. 2014
Methane Slip

<table>
<thead>
<tr>
<th>Methane Slip from Operation</th>
<th>GWP Life Cycle Emissions compared to HFO [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LNG</td>
</tr>
<tr>
<td>8 %</td>
<td>130</td>
</tr>
<tr>
<td>4 %</td>
<td>100</td>
</tr>
<tr>
<td>2.3 %</td>
<td>85</td>
</tr>
<tr>
<td>0 %</td>
<td>60</td>
</tr>
</tbody>
</table>

Source: Own rough calculation based on data from Brynolf et al. 2014
Methane Slip

<table>
<thead>
<tr>
<th>Methane Slip from Operation</th>
<th>GWP Life Cycle Emissions compared to HFO [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LNG</td>
</tr>
<tr>
<td>8 %</td>
<td>130</td>
</tr>
<tr>
<td>4 %</td>
<td>100</td>
</tr>
<tr>
<td>2.3 %</td>
<td>85</td>
</tr>
<tr>
<td>0 %</td>
<td>60</td>
</tr>
</tbody>
</table>

Source: Own rough calculation based on data from Brynolf et al. 2014

Methane Slip Operation [%]

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-fuel engines</td>
<td>8</td>
<td>4.1</td>
</tr>
<tr>
<td>Dedicated gas engines</td>
<td>4.4</td>
<td>2.3</td>
</tr>
<tr>
<td>High Pressure Direct Injection HDPI</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Calculation from Dejene Assefa Hagos based on Stenersen and Thonstad 2017 / Corbett et al. 2015
Aspects to consider for future marine fuels and technologies

Source: Brynolf et al. 2014
Liquefied Natural Gas – LNG
Liquefied Biogas/Biomethane - LBG

+ Mature technology
+ Fuel costs competitive (LNG)
+ Local air pollution reduction

- High infrastructure cost
- Reduced cargo capacity
- Global Warming Potential (LNG)
- Uncertainty about methane leakage

<table>
<thead>
<tr>
<th></th>
<th>LNG</th>
<th>LBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>✗</td>
<td>?</td>
</tr>
<tr>
<td>Local Air Pollution</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Safety</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Range</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Conversion Cost</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
LNG - Examples

Norwegian MF Glutra
- 1st LNG gas ferry 2000

Fjord Line
- Two Cruise Ferries
- Denmark – Norway
- 1.5 PJ/year

Cargo Ships
- Ordered
- Mostly dual-fuel

Source: Schnack and Krüger 2015
Methanol – MeOH
bioMethanol - bioMeOH

+ Similar to bunkering fuels today
+ Lower infrastructure and retrofit costs
+ Local air pollution reduction
+ Components are of mature technology

+/- Fuel cost differ locally

- Global Warming Potential (MeOH)
- Higher primary energy input
- Reduced cargo capacity
- Safety barriers

<table>
<thead>
<tr>
<th></th>
<th>MeOH</th>
<th>bioMeOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Local Air Pollution</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Safety</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Range</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Conversion Cost</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Installations new-built Methanol Ship

Source: MAN 2015, Andersson and Salzar 2015
Methanol - Examples

Stena Germanica
- 24MW Retrofit
- Four engines on methanol
- Göteborg – Kiel

Source: Andersson and Salzar 2015

MS Innogy
- 5 kW - 7 modules fuel cell
- Fuel generated with CO₂ capture

Source: Ing.dk - Ingeniøren 2017
Electric - Batteries

+ Proven technology
+ Low operating costs
+ Less noise and vibration
+ No emissions during operation
+ Efficiency during load variations
+ Hybrid solutions

+/- Global Warming Potential depends on the electricity fuel mix

- Resource intensity of batteries
- High investment costs
- Low energy density – restricted range

<table>
<thead>
<tr>
<th>Battery</th>
<th>Global Warming</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Local Air Pollution</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>✗</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>Conversion Cost</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>Fuel Cost</td>
<td></td>
</tr>
</tbody>
</table>
Electric Batteries and Hybrid - Examples

Ampere
- Full electric 0.9 MW engine
- 1 MWh battery capacity
- 20min – 6km crossing

Helsingør-Helsingborg
- Full electric
- 4.16 MWh battery capacity
- 4km crossing

Scandlines
- 6 Hybrid ferries
- Aiming at full electric:
 - Puttgarden-Rødby: 20km – 45min

Danish inland ferries:
- 1PJ could be electric

Source: ABB.com
Source: Siemens.com
Source: Wikimedia commons
Electric - H2 – Fuel Cell

+ Proven performance in marine environment
+ No emissions during operation
+ No noise and vibration

+/- Costs expected to fall
+/- Global Warming Potential depends on the generation of the H2

- High density only at high pressure and cryogenic storage
- Low expected lifetime of fuel cell
- High investment costs for transport, storage, fuel cell
- Dimension and weight of fuel cells

<table>
<thead>
<tr>
<th></th>
<th>H2 Fuel Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>✔</td>
</tr>
<tr>
<td>Local Air Pollution</td>
<td>✔</td>
</tr>
<tr>
<td>Safety</td>
<td>✗</td>
</tr>
<tr>
<td>Range</td>
<td>✗</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>✗</td>
</tr>
<tr>
<td>Conversion Cost</td>
<td>✗</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>✗</td>
</tr>
</tbody>
</table>
Electric – H2 Fuel Cell Examples

Viking Lady
- Dual-fuel LNG/diesel Electric
- Fuel cell 320kW

Alsterwasser
- 2010 Hamburg
- Full electric / fuel cell powered
- 100kW engine
- 14 knots

Viking Cruise
- Planned: 2021
- Cruise ship
- 1400 persons – 230m long
- Hydrogen at 700bar -253degree

Wind and Solar

+ Proven performance
+ No fuel costs
+ No emissions during operation

+/- Auxiliary propulsion

- Weather dependency
- Dimension/Weight
- Logistics

<table>
<thead>
<tr>
<th></th>
<th>Wind</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Local Air Pollution</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Safety</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Range</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Conversion Cost</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Wind - Solar Examples

Ecoliner
- Panamax
- Sails + Diesel electric

E-SHIP 1
- 2010
- Flettner Rotor
- 15-25% fuel savings

TESO
- 150kW solar panels
- 40% of hotel load

Sources: fairtransport.eu
kaæstn Disk/Cat - CC BY-SA 3.0 de Wikipedia/shipsmonthly.com
Main Uncertainties

<table>
<thead>
<tr>
<th></th>
<th>LNG</th>
<th>MeOH</th>
<th>LBG</th>
<th>Bio MeOH</th>
<th>Battery</th>
<th>Wind</th>
<th>Solar</th>
<th>H2 Fuel Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>✗</td>
<td>✗</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Local Air Pollution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Safety</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Range</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>○</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Conversion Cost</td>
<td>○</td>
<td>✓</td>
<td>○</td>
<td>✓</td>
<td>✓</td>
<td>○</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>✓</td>
<td>○</td>
<td>✗</td>
<td>○</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

Main Uncertainty:
- Methane Slip
- Safety
- Range
- Capacity
- Weather
- Size
- Costs
Conclusion

<table>
<thead>
<tr>
<th>Not only fuel switch</th>
<th>LNG</th>
<th>MeOH</th>
<th>LBG</th>
<th>Bio MeOH</th>
<th>Battery</th>
<th>Wind</th>
<th>Solar</th>
<th>H2 Fuel Cells</th>
</tr>
</thead>
</table>

Today
- Operational Efficiencies
- Transition Fuels
- Short Distan ces
- Hybrid Solutions
- Electro-Fuels
- New Ship Designs

2050
- Hull Design
- On-shore charging
- Auxiliary Power
- Small Scale
- Auxiliary Power

Way forward

Addressing climate emissions by regulation - CO₂ and CH₄
Scandinavia as frontrunner in Sustainable Shipping
Mange tak for opmerksomhæden

Density of Ship Movements 2016
Sources I

• Danmark Statistik, 2015, Table ENE1HA: 50000 Water transport / Table ENE3H: 03000 Fishing
• Mærsk, Sustainability Report 2016. Available online: https://www.maerskline.com/about/sustainability
Sources II